3398. Отрезок, соединяющий середины оснований трапеции, равен 3. Углы при большем основании равны
30^{\circ}
и
60^{\circ}
. Найдите высоту.
Ответ.
\frac{3\sqrt{3}}{2}
.
Указание. Через середину меньшего основания трапеции проведите прямые, параллельные боковым сторонам.
Решение. Через середину
M
меньшего основания
BC
трапеции
ABCD
проведём прямую, параллельную боковой стороне
AB
, до пересечения с основанием
AD
в точке
P
и прямую, параллельную боковой стороне
CD
, до пересечения с прямой
AD
в точке
Q
. Если
K
— середина
AD
, то
PK=AK-AP=AK-BM=DK-MC=DK-QD=KQ.

Поэтому
MK
— медиана треугольника
PMQ
, а так как
\angle PMQ=180^{\circ}-60^{\circ}-30^{\circ}=90^{\circ},

то
PK=KQ=MK=3
(см. задачу 1109).
Если
\angle A=60^{\circ}
, то
\angle MPK=60^{\circ}
. Поэтому треугольник
PMK
— равносторонний, его высота равна
\frac{3\sqrt{3}}{2}
. Следовательно, высота трапеции равна
\frac{3\sqrt{3}}{2}
.

Источник: Гордин Р. К. ЕГЭ 2010. Математика. Задача C4. Геометрия. Планиметрия. — М.: МЦНМО, 2010. — № 4.27, с. 32