4196. Диагонали AC
и BE
правильного пятиугольника ABCDE
пересекаются в точке K
. Докажите, что описанная окружность треугольника CKE
касается прямой BC
.
Указание. Вычислите углы KCB
и KEC
.
Решение. Каждый угол правильного пятиугольника равен \frac{180^{\circ}(5-2)}{5}=\frac{540^{\circ}}{5}=108^{\circ}
, а угол между диагоналями, исходящими из одной вершины, равен \frac{360^{\circ}}{2\cdot5}=36^{\circ}
. Значит,
\angle KCB=\angle ACB=\angle BAC=\frac{180^{\circ}-\angle ABC}{2}=\frac{180^{\circ}-108^{\circ}}{2}=36^{\circ}=\angle BEC=\angle KEC,
а так как KEC
— угол, вписанный в описанную окружность треугольника CKE
, то по теореме, обратной теореме об угле между касательной и хордой (см. задачу 144), BC
— касательная к этой окружности.
Источник: Прасолов В. В. Задачи по планиметрии. — Ч. 1. — М.: Наука, 1991. — № 6.45(а)
Источник: Прасолов В. В. Задачи по планиметрии. — 6-е изд. — М.: МЦНМО, 2007. — № 6.49(а), с. 156