4545. Стороны параллелограмма равны a
и b
, а острый угол между диагоналями равен \alpha
. Найдите площадь параллелограмма.
Ответ. \frac{1}{2}|b^{2}-a^{2}|\tg\alpha
.
Решение. Пусть a\lt b
. Тогда против острого угла между диагоналями, лежит сторона, равная a
(см. задачу 1864). Обозначим через x
и y
половины диагоналей параллелограмма. По теореме косинусов
a^{2}=x^{2}+y^{2}-2xy\cos\alpha,~b^{2}=x^{2}+y^{2}-2xy\cos(180^{\circ}-\alpha)=x^{2}+y^{2}+2xy\cos\alpha.
Тогда b^{2}-a^{2}=4xy\cos\alpha
, откуда находим, что 2xy=\frac{b^{2}-a^{2}}{2\cos\alpha}
.
Пусть S
— площадь параллелограмма. Тогда
S=\frac{1}{2}\cdot2x\cdot2y\sin\alpha=2xy\sin\alpha=\frac{b^{2}-a^{2}}{2\cos\alpha}\cdot\sin\alpha=\frac{1}{2}(b^{2}-a^{2})\tg\alpha.
Если a\gt b
, то аналогично получим, что S=\frac{1}{2}(a^{2}-b^{2})\tg\alpha
.
Источник: Вступительный экзамен в МФТИ. — 1965, билет 2, № 1
Источник: Сборник методических материалов письменных испытаний по математике и физике абитуриентов Московского Физтеха (1947—2006 гг.). Математика / Сост. Д. А. Александров, И. Г. Почернин, И. Г. Проценко, И. Е. Сидорова, В. Б. Трушин, И. Г. Шомполов. Под ред. И. Г. Шомполова. — М.: МФТИ, 2007. — № 65-2-1, с. 107
Источник: Понарин Я. П. Элементарная геометрия. — Т. 1: Планиметрия, преобразования плоскости. — М.: МЦНМО, 2004. — № 1, с. 138