4852. Внутри остроугольного треугольника ABC
дана точка P
, причём \angle APB=\angle ACB+60^{\circ}
, \angle BPC=\angle BAC+60^{\circ}
, \angle CPA=\angle CBA+60^{\circ}
. Докажите, что точки пересечения продолжений отрезков AP
, BP
и CP
(за точку P
) с описанной окружностью треугольника ABC
лежат в вершинах равностороннего треугольника.
Указание. Угол между пересекающимися хордами окружности равен полусумме противоположных дуг, высекаемых этими хордами.
Решение. Пусть A_{1}
, B_{1}
и C_{1}
— точки пересечения продолжений отрезков AP
, BP
и CP
(за точку P
) с описанной окружностью треугольника ABC,\angle BAC=\alpha
. Тогда \angle BPC=\alpha+60^{\circ}
.
С другой стороны,
\angle BPC=\frac{1}{2}(\cup CA_{1}B+\cup B_{1}AC_{1})=\frac{1}{2}(2\alpha+\cup B_{1}AC_{1})
(см. задачу 26). Из уравнения
\alpha+60^{\circ}=\frac{1}{2}(2\alpha+\cup B_{1}AC_{1})
находим, что \cup B_{1}AC_{1}=120^{\circ}
. Следовательно, \angle B_{1}A_{1}C_{1}=60^{\circ}
. Аналогично \angle A_{1}B_{1}C_{1}=60^{\circ}
.
Автор: Ягубьянц А. А.
Источник: Журнал «Квант». — 1976, № 9, с. 47, М401
Источник: Задачник «Кванта». — М401