5271. Через точку, взятую внутри треугольника, проведены три прямые, параллельные его сторонам. Эти прямые образуют со сторонами треугольника три треугольника, площади которых равны S_{1}
, S_{2}
, S_{3}
. Найдите площадь S
данного треугольника. Докажите, что S_{1}+S_{2}+S_{3}\geqslant\frac{1}{3}S
.
Ответ. S=(\sqrt{S_{1}}+\sqrt{S_{2}}+\sqrt{S_{3}})^{2}
.
Указание. См. задачу 3028.
Решение. Поскольку S=(\sqrt{S_{1}}+\sqrt{S_{2}}+\sqrt{S_{3}})^{2}
(см. задачу 3028) и
\sqrt{S_{1}\cdot S_{2}}\leqslant\frac{S_{1}+S_{2}}{2},~\sqrt{S_{1}\cdot S_{3}}\leqslant\frac{S_{1}+S_{3}}{2},~\sqrt{S_{2}\cdot S_{3}}\leqslant\frac{S_{2}+S_{3}}{2},
то
S_{1}+S_{2}+S_{3}=S-2\sqrt{S_{1}\cdot S_{2}}-2\sqrt{S_{1}\cdot S_{3}}-2\sqrt{S_{2}\cdot S_{3}}\geqslant
\geqslant S-(S_{1}+S_{2}+S_{1}+S_{3}+S_{2}+S_{3})=S-2(S_{1}+S_{2}+S_{3}).
Следовательно, S_{1}+S_{2}+S_{3}\geqslant\frac{1}{3}S
.
Источник: Готман Э. Г., Скопец З. А. Решение геометрических задач аналитическим методом: Пособие для учащихся 9—10 кл. — М.: Просвещение, 1979. — № 45, с. 12