5609. AA_{1}
, BB_{1}
и CC_{1}
— высоты остроугольного треугольника ABC
, AA_{1}=BA_{1}
.
а) Докажите, что треугольник A_{1}B_{1}C_{1}
прямоугольный.
б) Найдите отношение, в котором высота CC_{1}
делит отрезок A_{1}B_{1}
, если известно, \tg\angle ACB=2
.
Ответ. 3:5
, считая от точки B_{1}
.
Решение. а) Треугольник AA_{1}B
прямоугольный и равнобедренный, поэтому \angle ABC=45^{\circ}
. Тогда
\angle AB_{1}C_{1}=\angle ABC=45^{\circ},~\angle CB_{1}A_{1}=\angle ABC=45^{\circ}
(см. задачу 141). Следовательно,
\angle A_{1}B_{1}C_{1}=180^{\circ}-\angle AB_{1}C_{1}-\angle CB_{1}A_{1}=180^{\circ}-45^{\circ}-45^{\circ}=90^{\circ}.
б) Обозначим \angle ACB=\gamma
. Аналогично предыдущему находим, что \angle A_{1}C_{1}B_{1}=180^{\circ}-2\gamma
. Пусть M
— точка пересечения CC_{1}
и A_{1}B_{1}
. Поскольку C_{1}M
— биссектриса треугольника A_{1}B_{1}C_{1}
(см. задачу 533), то
\frac{B_{1}M}{MA_{1}}=\frac{B_{1}C_{1}}{A_{1}C_{1}}=\cos\angle A_{1}C_{1}B_{1}=\cos(180^{\circ}-2\gamma)=
=-\cos\gamma=\frac{\tg^{2}\gamma-1}{1+\tg^{2}\gamma}=\frac{4-1}{1+4}=\frac{3}{5}.
Источник: Гордин Р. К. ЕГЭ 2017. Математика. Геометрия. Стереометрия. Задача 14 (профильный уровень). — М.: МЦНМО, 2017. — № 15.26.2, с. 162