8263. Боковое ребро правильной четырёхугольной пирамиды равно b
. Найдите площадь полной поверхности пирамиды, если центры сфер вписанной в неё и описанной около неё, совпадают.
Ответ. 2b^{2}
.
Указание. Установите, что плоский угол при вершине пирамиды равен 45^{\circ}
.
Решение. Пусть PABCD
— правильная четырёхугольная пирамида с вершиной P
, O
— общий центр вписанной и описанной сфер радиусов соответственно r
и R
, PH
— высота пирамиды. Тогда OP=R
и OH=r
.
Обозначим через a
сторону основания пирамиды. Тогда OA=R
, AH=\frac{a}{\sqrt{2}}
. Из прямоугольного треугольника APH
находим, что
\frac{a}{\sqrt{2}}=AH=\sqrt{OA^{2}-OH^{2}}=\sqrt{R^{2}-r^{2}},
откуда a=\sqrt{2(R^{2}-r^{2})}
.
Сфера с центром O
проходит через вершины треугольника APB
, значит, перпендикуляр, опущенный из точки O
на грань APB
, проходит через центр O_{1}
окружности, описанной около треугольника APB
(см. задачу 9056). При этом OO_{1}=r
как радиус сферы вписанной в пирамиду, а O_{1}S
— радиус окружности, описанной около треугольника APB
.
Из прямоугольного треугольника OPO_{1}
находим, что
O_{1}P=\sqrt{OP^{2}-OO_{1}^{2}}=\sqrt{R^{2}-r^{2}}.
Обозначим \angle APB=\alpha
, O_{1}P=R_{1}
. По теореме синусов
\sin\alpha=\frac{AB}{2R_{1}}=\frac{a}{2\sqrt{R^{2}-r^{2}}}=\frac{\sqrt{2(R^{2}-r^{2})}}{2\sqrt{R^{2}-r^{2}}}=\frac{\sqrt{2}}{2},
следовательно, \angle APB=45^{\circ}
.
Из треугольника APB
по теореме косинусов находим, что
a^{2}=b^{2}+b^{2}-2b^{2}\cos45^{\circ}=2b^{2}-b^{2}\sqrt{2}.
Пусть S
— площадь полной поверхности пирамиды. Тогда
S=4S_{\triangle APB}+S_{ABCD}=4\cdot\frac{1}{2}b^{2}\sin45^{\circ}+a^{2}=b^{2}\sqrt{2}+(2b^{2}-b^{2}\sqrt{2})=2b^{2}.
Источник: Готман Э. Г., Скопец З. А. Решение геометрических задач аналитическим методом: Пособие для учащихся 9—10 кл. — М.: Просвещение, 1979. — № 364, с. 54