8288. Числа x
, y
и z
таковы, что 3x^{2}+y^{2}+z^{2}=4
. Какое наибольшее значение может принимать выражение x+y-2z
?
Ответ. \frac{8}{3}\sqrt{3}
.
Указание. Рассмотрите прямоугольную систему координат Oxyz
и векторы \overrightarrow{m}=\left(\frac{1}{\sqrt{3}};1;-2\right)
и \overrightarrow{n}=(x\sqrt{3};y;z)
.
Решение. Рассмотрим прямоугольную систему координат Oxyz
и векторы \overrightarrow{m}=\left(\frac{1}{\sqrt{3}};1;-2\right)
и \overrightarrow{n}=(x\sqrt{3};y;z)
. Тогда
\overrightarrow{m}\cdot\overrightarrow{n}=\frac{1}{\sqrt{3}}\cdot x\sqrt{3}+1\cdot y-2\cdot z=x+y-2z.
С другой стороны, если угол между векторами \overrightarrow{m}
и \overrightarrow{n}
равен \varphi
, то
\overrightarrow{m}\cdot\overrightarrow{n}=|\overrightarrow{m}|\cdot|\overrightarrow{n}|\cos\varphi
(см. задачу 900). Следовательно,
2x+y-z=|\overrightarrow{m}|\cdot|\overrightarrow{n}|\cos\varphi\leqslant|\overrightarrow{m}|\cdot|\overrightarrow{n}|=
=\sqrt{\frac{1}{3}+1+4}\cdot\sqrt{3x^{2}+y^{2}+z^{2}}=\sqrt{\frac{16}{3}}\cdot2=\frac{8}{3}\sqrt{3},
причём равенство достигается в случае, когда \cos\varphi=1
, т. е. когда вектор \overrightarrow{n}
сонаправлен с фиксированным вектором \overrightarrow{m}
. Тогда \varphi=0^{\circ}
.
Источник: Вступительный экзамен на биологический факультет МГУ. — 1989, вариант 3, № 5
Источник: Нестеренко Ю. В., Олехник С. Н., Потапов М. К. Задачи вступительных экзаменов по математике. — М.: Факториал, 1995. — с. 82