9671. ABCD
— правильный тетраэдр с ребром a
. Пусть M
— центр грани ADC
, N
— середина ребра BC
. Найдите радиус шара, вписанного в трёхгранный угол A
и касающегося прямой MN
.
Ответ. \frac{a(5\sqrt{6}-3\sqrt{2})}{48}
.
Решение. Центр Q
шара радиуса x
, о котором говорится в условии, лежит на высоте тетраэдра, проведённой из вершины A
. Этот шар касается грани ADC
в точке L
, лежащей на прямой AM
, а грани ABC
— в точке, лежащей на прямой AN
.
Сечение шара плоскостью AMN
— круг, вписанный в треугольник AMN
со сторонами
AM=\frac{a\sqrt{3}}{3},~AN=\frac{a\sqrt{3}}{2},~MN=\frac{1}{2}BC=\frac{a}{2}
(как медиана прямоугольного треугольника BMC
, проведённая из вершины прямого угла). Тогда (см. задачу 219)
AL=\frac{AM+AN-MN}{2}=\frac{\frac{a\sqrt{3}}{3}+\frac{a\sqrt{3}}{2}-\frac{a}{2}}{2}=\frac{a(5\sqrt{3}-3)}{12}.
Радиус r
шара с центром O
, вписанного в правильный тетраэдр ABCD
, равен четверти высоты тетраэдра, т. е. r=\frac{1}{4}a\sqrt{\frac{2}{3}}
(см. задачу 7048). Из подобия прямоугольных треугольников AQL
и AOM
получаем, что
\frac{x}{r}=\frac{QL}{OM}=\frac{AL}{AM}=\frac{\frac{a(5\sqrt{3}-3)}{12}}{\frac{a\sqrt{3}}{3}}=\frac{5-\sqrt{3}}{4},
откуда x=\frac{a(5\sqrt{6}-3\sqrt{2})}{48}
.
Источник: Шарыгин И. Ф. Геометрия. Стереометрия: Задачник для 10—11 кл. — М.: Дрофа, 1998. — № 91, с. 14