423. Диагонали AC
и BD
четырёхугольника ABCD
, вписанного в окружность радиуса R
, пересекаются под прямым углом в точке P
, удалённой на расстояние d
от центра окружности. Докажите, что AC^{2}+BD^{2}=8R^{2}-4d^{2}
.
Решение. Воспользуемся следующими утверждениями.
1. AB^{2}+CD^{2}=4R^{2}
(см. задачу 131).
2. AP\cdot PC=BP\cdot PD=R^{2}-d^{2}
(см. задачу 2635)
Тогда
AC^{2}+BD^{2}=(AP+PC)^{2}+(BP+PD)^{2}=
=AP^{2}+2AP\cdot PC+PC^{2}+BP^{2}+2BP\cdot PD+PD^{2}=
=(AP^{2}+BP^{2})+(PC^{2}+PD^{2})+2(AP\cdot PC+BP\cdot PD)=
=AB^{2}+CD^{2}+4AP\cdot PC=4R^{2}+4(R^{2}-d^{2})=8R^{2}-4d^{2}.
Источник: Прасолов В. В. Задачи по планиметрии. — Ч. 1. — М.: Наука, 1991. — № 2.72, с. 38
Источник: Прасолов В. В. Задачи по планиметрии. — 6-е изд. — М.: МЦНМО, 2007. — № 2.75, с. 38