11047. Если прямые, проходящие через вершины A
, B
и C
треугольника ABC
, пересекаются с прямыми соответственно BC
, AC
и AB
в точках, лежащих на одной прямой, то изогональные им прямые пересекаются с BC
, AC
и AB
в точках, также лежащих на одной прямой.
Решение. Пусть A_{1}
, B_{1}
и C_{1}
— точки пересечения прямых, проходящих через вершины соответственно A
, B
и C
, с прямыми BC
, AC
и AB
, а точки A_{2}
, B_{2}
и C_{2}
— соответствующие точки пересечения изогоналей прямых AA_{1}
, BB_{1}
и CC_{1}
с прямыми BC
, AC
и AB
.
По теореме Штейнера (см. задачу 4121)
\frac{CA_{1}\cdot CA_{2}}{BA_{1}\cdot BA_{2}}=\frac{AC^{2}}{AB^{2}},~\frac{AB_{1}\cdot AB_{2}}{BA_{1}\cdot CB_{1}}=\frac{AB^{2}}{BC^{2}},~\frac{BC_{1}\cdot BC_{2}}{AC_{1}\cdot AC_{2}}=\frac{BC^{2}}{AC^{2}}.
Перемножив эти равенства, получим, что
\frac{CA_{1}\cdot CA_{2}\cdot AB_{1}\cdot AB_{2}\cdot BC_{1}\cdot BC_{2}}{BA_{1}\cdot BA_{2}\cdot CB_{1}\cdot CB_{2}\cdot AC_{1}\cdot AC_{2}}=\frac{AC^{2}\cdot AB^{2}\cdot BC^{2}}{AB^{2}\cdot BC^{2}\cdot AC^{2}}=1,
а так как точки A_{1}
, B_{1}
и C_{1}
лежат на одной прямой, то по теореме Менелая (см. задачу 1622)
\frac{CA_{1}}{A_{1}B}\cdot\frac{BC_{1}}{C_{1}A}\cdot\frac{AB_{1}}{B_{1}C}=-1.
Значит,
\frac{CA_{2}}{A_{2}B}\cdot\frac{BC_{2}}{C_{2}A}\cdot\frac{AB_{2}}{B_{2}C}=-1.
Следовательно, точки A_{2}
, B_{2}
, C_{2}
лежат на одной прямой (см. задачу 1622).
Примечание. См. также статью В.Журавлёва, П.Самовола «Этюд о симедианах», Квант, 2013, N5-6, с.33-40.
Источник: Ефремовъ Д. Д. Новая геометрiя треугольника. — Одесса, 1902. — с. 119
Источник: Зетель С. И. Новая геометрия треугольника. — М.: Учпедгиз, 1962. — с. 96