1192. Докажите, что биссектрисы двух внешних углов и третьего внутреннего угла треугольника пересекаются в одной точке.
Указание. Биссектриса угла есть геометрическое место внутренних точек угла, равноудалённых от его сторон.
Решение. Первый способ. Рассмотрим точку O
пересечения биссектрис внешних углов CBM
и BCN
при вершинах B
и C
треугольника ABC
. Поскольку точка O
лежит на биссектрисе угла CBM
, то она равноудалена от прямых BC
и AB
; поскольку точка O
лежит на биссектрисе угла BCN
, она равноудалена от прямых BC
и AC
. Поэтому точка O
равноудалена от сторон угла BAC
. Следовательно, она лежит на биссектрисе угла BAC
.
Точка O
является центром вневписанной окружности треугольника ABC
.
Второй способ. Пусть AA_{1}
, BB_{1}
— биссектрисы внешних треугольника ABC
, а CC_{1}
— биссектриса его внутреннего угла, причём A_{1}
, B_{1}
и C_{1}
— точки пересечения этих биссектрис с прямыми BC
, AC
и AB
соответственно. Тогда
\frac{AB_{1}}{B_{1}C}=\frac{AB}{BC},~\frac{CA_{1}}{A_{1}B}=\frac{AC}{AB},~\frac{BC_{1}}{C_{1}A}=\frac{BC}{AC}
(см. задачу 1645). Значит,
\frac{AB_{1}}{B_{1}C}\cdot\frac{CA_{1}}{A_{1}B}\cdot\frac{BC_{1}}{C_{1}A}=\frac{AB}{BC}\cdot\frac{AC}{AB}\cdot\frac{AB}{AC}=1.
Следовательно, по теореме Чевы (см. задачу 1621) прямые AA_{1}
, BB_{1}
и CC_{1}
пересекаются в одной точке.
Примечание. См также статью Ю.Билецкого и Г.Филипповского «О пользе вневписанных окружностей», Квант, 2001, N2, с.28.
Источник: Адамар Ж. Элементарная геометрия. — Ч. 1: Планиметрия. — М.: Учпедгиз, 1948. — с. 63
Источник: Зетель С. И. Новая геометрия треугольника. — М.: Учпедгиз, 1962. — с. 12
Источник: Делоне Б. Н., Житомирский О. К. Задачник по геометрии. — М.—Л.: ОГИЗ, 1949. — № 73, с. 10