12955. Пусть M
— точка пересечения медиан треугольника, I
— центр его вписанной окружности, r
— её радиус, R
— радиус описанной окружности треугольника, а p
— полупериметр. Докажите, что
MI^{2}=\frac{1}{9}(p^{2}+5r^{2}-16Rr).
Решение. Применив формулу Лейбница (см. задачу 7259) и формулу для суммы квадратов сторон треугольника
a^{2}+b^{2}+c_{2}=2p^{2}-2r^{2}-8rR
(см. примечание к задаче 11293) что
IA^{2}=(p-a)^{2}+r^{2},~IB^{2}=(p-b)^{2}+r^{2},~IA^{2}=(p-c)^{2}+r^{2},
где a
, b
и c
— сторона треугольника ABC
, противолежащие вершинам A
, B
и C
соответственно (см. задачу 219), получим
3IM^{2}=MA^{2}+MB^{2}+MC^{2}-\frac{1}{3}(BC^{2}+AC^{2}+AB^{2})=
=(p-a)^{2}+r^{2}+(p-b)^{2}+r^{2}+(p-c)^{2}+r^{2}-\frac{1}{3}(a^{2}+b^{2}+c^{2})=
=3p^{2}-2p(a+b+c)+a^{2}+b^{2}+c^{2}+3r^{2}-\frac{1}{3}(a^{2}+b^{2}+c^{2})=
=3p^{2}-2p(a+b+c)+3r^{2}+\frac{2}{3}(a^{2}+b^{2}+c^{2})=
=3p^{2}-4p^{2}+3r^{2}+\frac{2}{3}(2p^{2}-2r^{2}-8rR)=
=-p^{2}+3r^{2}+\frac{2}{3}(2p^{2}-2r^{2}-8rR)=\frac{1}{3}(p^{2}+5r^{2}-16Rr).
Следовательно,
MI^{2}=\frac{1}{9}(p^{2}+5r^{2}-16Rr).
Что и требовалось доказать.
Источник: Шарыгин И. Ф. Геометрия: 9—11 кл.: От учебной задачи к творческой: Учебное пособие. — М.: Дрофа, 1996. — № 490, с. 59
Источник: Понарин Я. П. Элементарная геометрия. — Т. 1: Планиметрия, преобразования плоскости. — М.: МЦНМО, 2004. — № 4.31, с. 44