16181. Точки D
, E
и F
— основания биссектрис треугольника ABC
, проведённых из вершин A
, B
и C
соответственно. Обозначим BC=a
, CA=b
, AB=c
, AE=x
и AF=y
. Известно, что x+y=a
. Докажите, что
а) a^{2}=bc
;
б) \frac{1}{x}-\frac{1}{y}=\frac{1}{b}-\frac{1}{c}
;
в) \frac{1}{x}+\frac{1}{y}=\left(\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)^{2}
;
г) AD\lt a
.
Решение. Из свойства биссектрисы треугольника (см. задачу 1509) получаем
x=\frac{bc}{a+c},~y=\frac{bc}{a+b}.
а)
x+y=a~\Rightarrow~\frac{bc}{a+c}+\frac{bc}{a+b}=a~\Rightarrow
\Rightarrow~abc+b^{2}c+abc+bc^{2}=a^{3}+a^{2}b+a^{2}c+abc~\Rightarrow
\Rightarrow~bc(a+b+c)=a^{2}(a+b+c)~\Rightarrow~a^{2}=bc.
б)
\frac{1}{x}-\frac{1}{y}=\frac{a+c}{bc}-\frac{a+b}{bc}=\frac{a+c-a-b}{bc}=
=\frac{c-b}{bc}=\frac{1}{b}-\frac{1}{c}.
в)
\frac{1}{x}+\frac{1}{y}=\frac{a+c}{bc}-\frac{a+b}{bc}=\frac{2a+b+c}{bc}=\frac{2\sqrt{bc}+b+c}{bc}=
=\frac{(\sqrt{b}+\sqrt{c})^{2}}{(\sqrt{bc})^{2}}=\left(\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)^{2}.
г) Обозначим \angle BAC=\alpha
. Тогда (см. задачи 4021 и 3399)
AD=\frac{2bc\cos\frac{\alpha}{2}}{b+c}=\frac{2bc}{b+c}\cdot\cos\frac{\alpha}{2}\leqslant\sqrt{bc}\cos\frac{\alpha}{2}\lt\sqrt{bc}=a,
так как \cos\frac{\alpha}{2}\lt1
.
Источник: Журнал «Crux Mathematicorum». — 2001, № 8, задача 2598 (2000, с. 499, 2001, с. 267), с. 559